Interdisciplinary Graduate School of Science & Engineering

TOKYO INSTITUTE OF TECHNOLOGY
Establishment of the Interdisciplinary Graduate School

The Interdisciplinary Graduate School of Science and Engineering was founded at the Nagatsuta Campus (currently Suzukakedai Campus) in April 1975, as a pioneering example of increasing the emphasis on graduate schools. When it was founded, the Interdisciplinary Graduate School consisted of 72 Chairs (Koza): 25 Fundamental Chairs (Kikan Koza) and 47 Cooperative Chairs (Kyoryoku Koza). The School had 10 departments; Information Processing, Electronic Chemistry, Social Development, Precision Machinery Systems, Materials Science Engineering, Applied Electronics, Chemical Environment Engineering, Biochemistry, Energy Science, and Systems Science.

Self-transformation of the Interdisciplinary Graduate School

From the foundation of the school until 1987, 10 Chairs (Fundamental Chairs and Cooperative Chairs) were added. With the foundation of the Dept. of Bioscience and Biotechnology, the Dept. of Biochemistry was renamed the Dept. of Intelligence Science in April 1991. The department shifted its educational and research focus to intelligence, a phenomenon of life processes, and relocated instructors, setting a precedent for self-transformation in the Interdisciplinary Graduate School. From 1993 to 1996, the Dept. of Environmental Engineering was established, and the Dept. of Social Development and the Dept. of Energy Science were reorganized to form the Dept. of Built Environment and the Dept. of Energy Sciences. The Dept. of System Science and the Dept. of Intelligence Science were also reorganized to form the Dept. of Computational Intelligence and Systems Science. In April 1997, the Dept. of Innovative and Engineered Materials was established from the two departments of Electronic Chemistry and Materials Science Engineering, and these two departments were reorganized to form the Dept. of Electronic Chemistry and the Dept. of Materials Science and Engineering. Because of these changes, all the Fundamental Chairs of these departments have become Macro Chairs (Daikoza) and the departments have also established positions for collaborative professors and associate professors, introducing new styles of organization. To respond to social changes and demands, many departments were reorganized from 1998 to 2005 to form the following departments: Environmental Chemistry and Engineering, Environmental Science and Technology, Mechano-Micro Engineering, Electronics and Applied Physics, and Information Processing. Since its foundation, our Graduate School has been constantly transforming. As of December 2013, it provides education and research through 81 Chairs (24 Fundamental Chairs and 57 Cooperative Chairs) and 11 departments.
The Interdisciplinary Graduate School of Science and Engineering (IGS) primarily consists of two types of chairs, fundamental chairs and cooperative chairs. Fundamental chairs are operated by IGS faculty members, while cooperative chairs are run by non-IGS faculty members who are associated with research laboratories and research centers at the Institute. IGS also offers affiliated chairs by collaborative faculty members with high-level research backgrounds invited from government agencies, research laboratories, companies, and other organizations outside the Institute. Affiliated chairs are designed to provide students with education and research guidance from multilateral perspectives.
The major courses of the Interdisciplinary Graduate School of Science and Engineering can be categorized into 3 large groups. These categories are referred to as Materials, Environment and Energy, and Information and Systems. Also, each of these major courses and the various related fields has been displayed as a matrix in the following chart. The school covers a wide range of academic fields in this manner.

Innovative and Engineered Materials
- Materials Science and Technology
- Built Environment
- Energy Sciences
- Environmental Science and Engineering
- Electronic and Applied Physics
- Computational Intelligence and Systems Science
- Information Processing

Electronic Chemistry
- Fundamental Chairs
 - Molecular Process
 - Material and Energy Conversion
- Cooperative Chairs
 - Complex and Electrochemistry
 - Organoelectronic Chemistry
 - Spectroscopic Chemistry
 - Catalytic Chemistry
 - Solid State Chemical Physics

Materials Science and Engineering
- Fundamental Chairs
 - Materials and Energy Conversion
 - Composite Physical Properties, Mesoscopic, Structural Function Characteristics, and Material Response
 - Surfaces and Interfaces, Materials Science
 - Surface Materials, Nanoscale/Unlimited Phase, and Nanomaterials
- Cooperative Chairs
 - Design of Environmentally Beneficial Materials
 - Materials Processing with Low Environmental Costs
 - Structure and Optical Physics
 - Electrete Active Materials
 - Synaptic Materials
 - Materials Evaluation
 - Materials Structure Design
 - Frontier Materials Science
 - Functional Materials Analysis for Direct Sensing

There are high expectations for the development and application of new processes and materials in the substance and materials fields in the hope that they will bring safety to society, such as the sustainable maintenance of the global environment, the realization of an energy saving-oriented society, and the creation of a new industry. The Department of Innovative and Engineered Materials provides education and research that enable its students to acquire an advanced and practical ability to lead Japan and the world in astonishing technology in the future. Departmental research covers interdisciplinary fields that include physics, chemistry, biotechnology, materials science and energy. Departmental research themes are intended to maximize the characteristics of substances and materials, and they include electronic functions, superconducting, dynamic functions, energy conversion, space technology and science, medical technology, ecological technology, and semi-conducting technology. In order to systemize these things, the department actively adopts nanoscience and nanotechnology, and engages in front-line research. Departmental faculty staff comes from 24 laboratories, and consists of principal faculty members in charge of Fundamental Chairs, faculty members from three associated research laboratories who take charge of Cooperative Chairs, and faculty members who come from external organizations and take charge of Cooperative Chairs. In order to train capable students to acquire advanced planning capabilities, and cultivate open minds and humanity in harmony with the global environment and technology, the department implements project-oriented educational research for doctoral courses, including unified doctoral educational programs, advanced personal training programs, and Materials G-COE. In addition, the department also works actively on doctoral programs for corporate researchers so that they can work and study in a balanced manner.

Materials and Energy Conversion
- Environmental Materials Engineering and Science
 - Materials Science and Engineering
 - Substitutional/Functional Materials, Natural Environmental Characteristics, Materials Frontiers, Material Cycle Evaluation, Extreme Materials science (collaborative), and Materials Science for Expanding Environmental Limitations (collaborative)
- Cooperative Chairs
 - Highly Functional Materials Engineering and Science
 - Highly Functional Thin Films, Physical Functional Convergence in Materials, and Materials Science and Technology
 - Transformative Materials Science and Engineering
 - Extreme Processing and Surface Functionality

Pioneering science from the electrons’ perspective

The Department of Electronic Chemistry was established in April 1997 with the goal of creating new fields of study by expanding its predecessor, which was established at the time of the opening of the Interdisciplinary Graduate School of Science and Engineering. This department covers both the fundamental principles and applications of chemistry, and promotes education and research that represents the 21st century. The department’s major goal is to understand chemical phenomena in a unified way from the electrons’ perspective, based on the idea that chemical-reactions take place by means of electron transfer processes. Specifically, the department consists of laboratories covering a broad range of fields, including organic synthetic chemistry, organic electrochemistry, green chemistry, organic functional chemistry, polymer chemistry, lithium cells, fuel cells, bio cells, electroanalytical chemistry, inorganic solid-state chemistry, nanotechnology, complex chemistry, catalytic chemistry, organometallic chemistry, laser spectroscopy and biochemistry. The department has a fully-staffed research organization that consists of 8 chairs and employs 14 professors and 13 associate professors, including collaborative faculty members. In the Department of Electronic Chemistry, which has faculty members from a wide range of fields as mentioned above, students can thoroughly absorb the cutting-edge knowledge of chemistry and relevant fields through lectures and practical work as well. The curriculum consists of lectures so that students can acquire the ability to conduct activities in the future in the pure chemistry field, and diverse fields related to chemistry, such as material science, biochemistry, and energy conversion. Graduates from the department have been very active in a wide range of fields and organizations, including the industrial world, research institutes and universities.

Materials Innovation for Brighter Future of our Earth and Society

Materials are the key to innovative development of science and technology. The Department of Materials Science and Engineering was established in April 1997 by expanding its predecessor established at the time of opening the Interdisciplinary Graduate School of Science and Engineering, the Department of Materials Science and Engineering, in order to explore new materials science of the 21st century. The department promotes education and research as a department where students can study a wide range of fields from the basic principles to application of materials science, physics and chemistry in the academic field that represents the 21st century. The department is made up of a productive research organization with 17 chairs. The specific characteristics of the department are: (1) It consists of staff members and students from various professional fields not limited to physics, chemistry and materials science. (2) It works closely with the University’s Research Laboratories, and is equipped with the world’s finest facilities with the world’s finest teaching staffs. The department has a unique education system including Academy for Co-creative Education of Environment and Energy science. (3) It actively encourages students to go abroad, provides well-developed basic coursework, and offers classes for students to make presentations in English and enhance their ability to express themselves in English. Our students willingly write journal papers in English by themselves (about 60 papers on average per year), participate in international conferences, and present their papers (about 40 papers on average per year). (4) A scholarship system is provided, and the department holds Career Development lectures, which help students choose career paths and get jobs. (5) About 250 persons have completed master’s degrees and about 50 persons have completed doctoral degrees over the past five years, and they have been active in various kinds of business, including research projects in science and engineering.
Environmental problems become conspicuous when they cross international borders and may have complex and serious implications. The resolution of such problems requires the development of policies based on the power of science and technology. Moreover, international mutual collaboration is indispensable for the realization of a sustainable society, something that cannot be realized in one country alone. The Department of Environmental Science and Technology is aiming to make a further leap forward on the basis of a new educational and research policy: “The training of comprehensive environmental specialists who will play key roles in the society.” This department admits not only Japanese science students who have an interest in environmental issues, but also actively recruits international students and humanities students who have a strong sense of internationalism. Fieldwork is incorporated into the coursework, and a heuristic problem-solving approach for education and research on actual environments is emphasized. The lecture courses, a large number of which are offered in English, form a program of study through which students can acquire knowledge and skills in environmental science from the basic to the specialist level. For this reason, in addition to the fundamental and cooperative chairs shown on the right, external lecturers from collaborative organizations such as the Japan International Cooperation Agency (JICA), National Institute for Environmental Studies, National Institute for Land and Infrastructure Management, Central Research Institute of Electric Power Industry are also invited to lecture in order to provide a diverse approach to the study of the environment, including international fields. Graduates of this department are actively involved in a wide range of careers in public agencies, local governments, universities, government and private research institutes, and international organizations, as well as in various private sectors.

With the arrival of the 21st century, human activities are increasing rapidly, threatening to the global environment. We think that it is necessary to develop new cutting-edge world-leading technologies to address energy issues from many directions. For this reason, the Department of Built Environment was established as an academic field in promoting research and development from the fundamentals right through to applications. The Department of Energy Sciences aims to cultivate creative researchers and engineers with advanced knowledge and wide-ranging insights so that they can survey the global environment and social systems from the viewpoint of energy science and tackle various energy issues.

The Department of Environmental Chemistry and Environmental Biotechnology has a wide range of laboratories specialized in various fields listed below that study human living environments, from three principles, “Variaitus, Utilitas, and Firmitas,” namely aesthetics, utility, and stability. The efforts made by the Department of Built Environment since its establishment in 1996 have been acknowledged, and the Department was selected in 2008 as an international base for urban seismic engineering for the reduction of “mega risks” with regard to natural disasters under the GCOS Program. The Department has been striving to improve still further as a research and educational institution. As we are faced with recent critical threats to the global environment, we think that the interdisciplinary research and education efforts the Department of Built Environment have created academic fields which are essential to our future society.

The Department of Environmental Chemistry and Environmental Biotechnology was established in April 1998 with the aim of creating a new academic field for the 21st century. Its formation comes from the expansion of the long-standing predecessors and staff members. We aim to train graduates to become the leaders of the Interdisciplinary Graduate School of Science and Engineering, Department of Chemical Engineering. The department’s purpose is the establishment of a new academic field for tackling environmental problems from many directions. Based on the growing importance of environmental science as its base, research based on chemistry provides a fundamental role in environmental science and technology. The Department of Environmental Chemistry and Environmental Biotechnology is aiming to train graduates to become the leaders of the Interdisciplinary Graduate School of Science and Engineering, Department of Chemical Engineering. The department’s purpose is the establishment of a new academic field for tackling environmental problems from many directions.

The department promotes education and research activities with other organizations of the Tokyo Institute of Technology, such as the Research Laboratory for Nuclear Reactors, the Graduate School of Science and Engineering, and external research organizations, such as the Central Research Institute of Electric Power Industry, National Institute of Advanced Industrial Science and Technology, Japan Aerospace Exploration Agency, High Energy Accelerator Research Organization and Toshiba Corporation’s Power and Industrial Systems Research and Development Center so that students can acquire the abilities needed for solving problems from the viewpoint of science and engineering.

The department also aims to create a leading-edge academic field which can address energy issues from many directions. It is the department’s purpose to set the challenges in energy-related research on the global scale, and to promote research that can provide solutions to these challenges.

The department also aims to create a leading-edge academic field which can address energy issues from many directions. It is the department’s purpose to set the challenges in energy-related research on the global scale, and to promote research that can provide solutions to these challenges.
Innovative nanodevices and materials for the new generation of ICT

Electronics and Applied Physics

The Department of Electronics and Applied Physics provides education and research on advanced materials, nanotechnology, optical devices, silicon integrated circuits, and other leading-edge materials and devices that support the information and communication technology (ICT). The creation of next-generation ICT requires a deep understanding of physics regarding the properties and precise control of new materials as well as a technological foundation at the highest level. It requires that these be employed as the basis for new concepts to be used in the creation of photonic and electronic devices and, furthermore, in the creation of human-inspired devices. Moreover, it is necessary to mutually link and integrate the functions of individual devices to realize the functions they possess as a system. The department functionally integrates materials and devices that are seeing significant advances, by creating new materials in the ICT field, by searching for new solid-state properties, and by conducting research on new device systems that involve photonics, electronics, and the human-inspired devices. In doing so, the department aims to promote the creation of the field of advanced information device systems, and to promote educational research in this field. The department consists of two Fundamental Chairs (Advance d Devices and New Functional Devices) and five Cooperative Chairs. The department has faculty members in a wide range of specialized fields based on electronics and physics, and maintains a mutually and closely cooperative system. The department also invites visiting collaborative faculty members in cooperation with external research organizations for improving doctoral programs. Graduates from the department have been active in the ICT field and other fields in Japan and overseas, including industries, public research institutes and universities.

Mechano-Micro Engineering

Conventional engineering fields mainly based on mechanical engineering are now being recognized as an emerging interdisciplinary academic field covering electronics, control engineering, automation engineering and information engineering. This department aims to create an advanced machinery system and establish a methodology for it that will become useful after graduation. Major research fields cover interdisciplinary studies including advanced mechatronics, extremely fine devices, robotics and biotechnology. Research results in the department have contributed to the establishment and development of new academic fields in engineering and science related to production, security and safety. In addition, both departmental research and educational curricula cover new and large interdisciplinary fields, like the biomechanical engineering field, and the research is conducted in cooperation with Tokyo Medical & Dental University.

Information Processing

The Department of Information Processing was established for the purpose of investigating and teaching science and technology aimed toward human-oriented information integration systems. As a basic goal of the department, it is the mission of the department to contribute to the integration and development of new academic fields in science related to production, security and safety. In addition, both departmental research and educational curricula cover new and large interdisciplinary fields, like the biomechanical engineering field, and the research is conducted in cooperation with Tokyo Medical & Dental University.

Computational Intelligence and Systems Science

Systems that can transform their structures through the action of intelligent science, and living organisms produce new functions in real-time are called complex adaptive systems. Evolution, learning and development are typical examples of the emergent behavior of complex adaptive systems. The Department of Computational Intelligence and Systems Science was established in 1996 with the objective of scientifically understanding the emergent principles of these complex adaptive systems, and establishing design principles for intelligent functions based on the findings. In 2000, the department set forth a basic framework composed of four principles with complex adaptive systems as the foundation, as follows: (1) experimental and mathematical approach to design principles of life and brain, (2) science for analyzing and understanding humans and society, (3) engineering realization of the above and use in society, and (4) strategy to create an emergent society for generating diverse functions. In the Department of Computational Intelligence and Systems Science, researchers who are leaders in the fields mentioned above form a knowledge hub, and carry out cutting-edge research in collaboration with foreign and domestic education and research institutions and business corporations. The department’s objective for education is to create creative leaders who can take the leadership in cutting-edge fields. Because of this, the department has been actively working on education in relation to creativity and planning ability in doctoral programs, and guidance for research activities concerning doctoral theses. In addition, it helps the students acquire basic knowledge through lectures and practice and offers guidance to help them produce master theses under master’s programs. Furthermore, students can take a variety of optional courses, such as lectures on cutting-edge themes, and research education offered by faculty members from external corporations and research institutes.

Creation of a user-friendly and green advanced machinery system

Mechano-Micro Engineering

The Department of Electronics and Applied Physics provides education and research on advanced materials, nanotechnology, optical devices, silicon integrated circuits, and other leading-edge materials and devices that support the information and communication technology (ICT). The creation of next-generation ICT requires a deep understanding of physics regarding the properties and precise control of new materials as well as a technological foundation at the highest level. It requires that these be employed as the basis for new concepts to be used in the creation of photonic and electronic devices and, furthermore, in the creation of human-inspired devices. Moreover, it is necessary to mutually link and integrate the functions of individual devices to realize the functions they possess as a system. The department functionally integrates materials and devices that are seeing significant advances, by creating new materials in the ICT field, by searching for new solid-state properties, and by conducting research on new device systems that involve photonics, electronics, and the human-inspired devices. In doing so, the department aims to promote the creation of the field of advanced information device systems, and to promote educational research in this field. The department consists of two Fundamental Chairs (Advance d Devices and New Functional Devices) and five Cooperative Chairs. The department has faculty members in a wide range of specialized fields based on electronics and physics, and maintains a mutually and closely cooperative system. The department also invites visiting collaborative faculty members in cooperation with external research organizations for improving doctoral programs. Graduates from the department have been active in the ICT field and other fields in Japan and overseas, including industries, public research institutes and universities.

Information Processing

The Department of Information Processing was established for the purpose of investigating and teaching science and technology aimed toward human-oriented information integration systems. As a basic goal of the department, it is the mission of the department to contribute to the integration and development of new academic fields in science related to production, security and safety. In addition, both departmental research and educational curricula cover new and large interdisciplinary fields, like the biomechanical engineering field, and the research is conducted in cooperation with Tokyo Medical & Dental University.

Computational Intelligence and Systems Science

Systems that can transform their structures through the action of intelligent science, and living organisms produce new functions in real-time are called complex adaptive systems. Evolution, learning and development are typical examples of the emergent behavior of complex adaptive systems. The Department of Computational Intelligence and Systems Science was established in 1996 with the objective of scientifically understanding the emergent principles of these complex adaptive systems, and establishing design principles for intelligent functions based on the findings. In 2000, the department set forth a basic framework composed of four principles with complex adaptive systems as the foundation, as follows: (1) experimental and mathematical approach to design principles of life and brain, (2) science for analyzing and understanding humans and society, (3) engineering realization of the above and use in society, and (4) strategy to create an emergent society for generating diverse functions. In the Department of Computational Intelligence and Systems Science, researchers who are leaders in the fields mentioned above form a knowledge hub, and carry out cutting-edge research in collaboration with foreign and domestic education and research institutions and business corporations. The department’s objective for education is to create creative leaders who can take the leadership in cutting-edge fields. Because of this, the department has been actively working on education in relation to creativity and planning ability in doctoral programs, and guidance for research activities concerning doctoral theses. In addition, it helps the students acquire basic knowledge through lectures and practice and offers guidance to help them produce master theses under master’s programs. Furthermore, students can take a variety of optional courses, such as lectures on cutting-edge themes, and research education offered by faculty members from external corporations and research institutes.
INNOVATIVE PLATFORM for EDUCATION and RESEARCH

In the Interdisciplinary Graduate School of Science and Engineering (IGS), the Innovative Platform for Education and Research (IPER) was established in April 2010. The Platform consists of the Education and Research Core Group and the IPER Doctoral Course. The overall management of the Platform is conducted by the Steering and Management Committee. The Education and Research Core Group consists of core units led by professors of IGS. The core units actively engage in research projects in advanced research fields. The Core Group aims to facilitate awareness of core unit research activities by prospective IGS applicants from both inside and outside the Institute. The Core Group also supports all aspects of core unit activities on behalf of IGS. As shown in the figure, six core units are currently in operation. Please see the following page for more details. The IPER Doctoral Course was formulated for the advancement of doctoral education at the Institute. This new course aims to foster creative minds to meet the needs of society, where various opportunities await our graduates. The course consists of three sub-courses, described on page 11-12.

Leading Scientist Training Sub-Course
This sub-course is designed to grow capable researchers ready to take on tomorrow’s challenges. Students of this sub-course can earn a doctoral degree while participating in research projects, enabling them to acquire the knowledge and experience necessary to lead in internationally organized endeavors.

Creative Pioneer Training Sub-Course
This sub-course is designed to cultivate highly creative entrepreneurs. Based on the Institute’s long-standing traditions of microelectronics, or technical ingenuity, and “collaboration with industry in engineering,” students are taught to create new value through integration of scientific technologies related to their doctoral work with those of other fields. The sub-course aims to foster entrepreneurs able to seed research with commercial feasibility.

Admissions capacity for each sub-course is approximately 10 students. The Transdisciplinary Technologist Training Sub-Course is open not only to students of the Interdisciplinary Graduate School of Science and Engineering, but to all graduate students of the Institute.

Educational and Research Core Group
The Education and Research Core Group consists of core units selected from research units conducting noteworthy research in leading fields. The Group provides information on research activities of each research unit to prospective candidates from both inside and outside the Institute. The six core units of the Group are as follows.

- Electrochemical Energy Devices Core Unit
- Urban Earthquake Disaster Reduction Core Unit
- Synthetic Biology Core Unit
- Medical Engineering Core Unit
- Nanoelectronics Research Frontier Core Unit
- Atmospheric Plasma Processing Core Unit
DATA

Interdisciplinary Graduate School of Science and Engineering as seen in numbers

Number of Faculty Staff

<table>
<thead>
<tr>
<th>Department</th>
<th>Professor</th>
<th>Associate Professor</th>
<th>Lecturer</th>
<th>Assistant Professor</th>
<th>Coordinator Associate Professor</th>
<th>Visiting Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovative and Engineered Materials</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Electronic Material</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Science and Technology</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Chemistry and Engineering</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Energy Sciences</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Energy Sciences</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical and Micro-Engineering</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Electronic and Applied Physics</td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Information Processing</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>8</td>
<td>42</td>
<td>62</td>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>

Number of Students

<table>
<thead>
<tr>
<th>Department</th>
<th>Master's Course</th>
<th>Doctoral Course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st year</td>
<td>2nd year</td>
</tr>
<tr>
<td>Innovative and Engineered Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Chemistry and Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Micro-Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic and Applied Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of International students

- Master course: 10.7% International Students
- Doctoral course: 34.0% International Students
- Total: 34.0% International Students (as of May 2013)

ACCESS

- **Ookayama Campus**
 - Ookayama Station on the Tokyu Oimachi and Tokyu Meguro Lines
 - About 45 minutes from Haneda Airport
 - About 100 minutes from Narita Airport
- **Suzukakedai Campus**
 - Suzukakedai Station on the Tokyo Den’entoshi Line
 - About 70 minutes from Haneda Airport
 - About 90 minutes from Narita Airport
- **Tamachi Campus**
 - Tamachi Station on the JR Yamanote and Keihin-Tohoku Lines
 - About 25 minutes from Haneda Airport
 - About 10 minutes from Tokyo Station